True Nature of the '*nido*-2,6-C₂B₇H₁₁' Dicarbaborane. Correction of an Error Persisting for Fifteen Years

Stanislav Heřmánek,* Tomáš Jelínek, Jaromír Plešek, Bohumil Štíbr, and Jiří Fusek

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Řež near Prague, Czechoslovakia

A complex n.m.r. study has proved that 'nido-2,6-C₂B₇H₁₁' is in fact the arachno-4,5-C₂B₇H₁₃ dicarbaborane.

We report that the compound previously described as '*nido*-2,5-C₂B₇H₁₁,' reported several times since its discovery¹ in 1971 under this formula with varying numbering and structure,¹⁻³ is not in fact of this formulation, and the relevant sections of papers dealing with it¹⁻⁴ will have to be reassessed in the light of its true formula and structure.

Our recent multinuclear n.m.r. investigation has shown unequivocally that the compound is in reality the 4,5-dicarbaarachno-nonaborane(13), 4,5- $C_2B_7H_{13}$, (1). The two additional hydrogens (as compared with ' $C_2B_7H_{11}$ ') have now been found in the ¹H n.m.r. spectrum in C_6D_6 (Figure 1a): one in the H(C) signal of intensity 2 at δ 0.44 p.p.m. and the

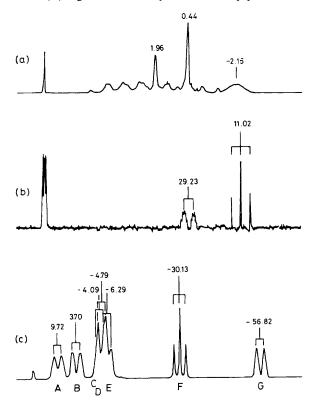
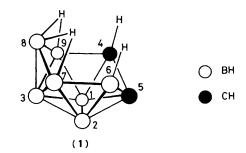


Figure 1. N.m.r. spectra of $4,5-C_2 3_7 H_{13}$ (1): (a) ¹H; (b) ¹³C; (c) ¹¹B.


second one in the hydrogen bridge of intensity 2 at δ -2.15 p.p.m. The ¹³C n.m.r. spectrum has identified the CH and CH₂ signals unambiguously (Figure 1b). The ¹¹B n.m.r. spectrum (Figure 1c), after line narrowing, has shown two B-H vertices (A, B) influenced by the coupling with adjacent B-H-B bridges and a triplet of a BH₂ group (F). The B-H-B coupling expected with the boron C is hidden in the C, D, E envelope.

On the basis of new findings, the mass spectra of (1) have been re-measured using all three main techniques. The results (electron impact, 70 eV: m/z 113, P-1; chemical ionisation m/z 115, P+1; negative ion: m/z 114, parent) are consistent with the formula ${}^{12}C_{2}{}^{11}B_{7}{}^{11}H_{13}$.

These facts cannot be interpreted otherwise than in terms of the structure (1). The two-dimensional ¹¹B–¹¹B spectrum fully supports structure (1), showing nine of the ten expected cross peaks, namely A = B (7) interacting with: E^4 , F^1 , G^1 ; B = B(9): D³, G^4 ; C = B (8): G^5 ; D = B (1): B³, G^3 ; E = B (2): A⁴, F^1 , G^1 ; F = B (6): A¹, E^1 ; G = B (3): A¹, B⁴, C⁵, D³, E¹ (the indexes denote intensities of the interactions). The missing E–D cross peak is in the overlap area.

The species (1) has thus a conventional nine-vertex *arachno* framework with 2n + 6 = 24 skeletal electrons, two vicinal hydrogen bridges, one BH₂ group, and the CH and CH₂ groups within the open hexagonal face of 4,5-C₂B₇H₁₃, being thus an isoskeletal and isotopological counterpart of the long known 4,6-C₂B₇H₁₃ dicarbaborane.⁵ The two isomers differ only in the positions 5 and 6, respectively, where skeletal atoms are interchanged.

Three main errors were responsible for the persistence of this error for fifteen years: (a) unsuspected dehydrogenation under the conditions of the mass spectrometric experiment

indicated the erroneous $C_2B_7H_{11}$ formula; (b) the original ¹H spectra^{1,2} were not re-measured, and published intensities of the two CH and one B–H–B signals were not previously doubted; (c) the conclusive ¹³C n.m.r. spectrum had not previously been recorded.

Having been involved in the chemistry of ${}^{4}C_{2}B_{7}H_{11}$ for a long time, we feel some responsibility for the persistence of this error, and we apologize for this to the community of borane chemists.

A full paper on this subject is now in preparation.

We thank Drs. I. Koruna and M. Ryska of the Research Institute for Pharmacy and Biochemistry, Prague, for the measurements of the mass spectra.

Received, 28th November, 1986; Com. 1691

References

- 1 R. R. Rietz and R. Schaeffer, J. Am. Chem. Soc., 1971, 93, 1263.
- 2 R. R. Rietz and R. Schaeffer, J. Am. Chem. Soc., 1973, 95, 6254.
- J. Plešek and S. Heřmánek, Pure Appl. Chem., 1974, 39, 433;
 H. M. Colquhoun, T. J. Greenhough, M. G. H. Wallbridge,
 S. Heřmánek, and J. Plešek, J. Chem. Soc., Dalton Trans., 1978, 944; J. Plešek, B. Štíbr, and S. Heřmánek, Chem. Ind. (London), 1980, 626; B. Štíbr, and S. Heřmánek, Chem. Ind. (London), 1980, 626, B. Štíbr, S. Heřmánek, J. Plešek, and K. Baše, ibid, p. 468;
 B. Štíbr, J. Plešek, and S. Heřmánek, Inorg. Synth., 1983, 22, 237.
- 4 G. K. Barker, M. P. Garcia, M. Green, G. N. Pain, F. G. A. Stone, S. K. R. Jones, and A. J. Welch, J. Chem. Soc., Chem. Commun., 1981, 652; J. J. Briguglio and L. G. Sneddon, Organometallics, 1986, 5, 327.
- 5 F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Am. Chem. Soc., 1966, 88, 607.